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Abstract. Rare-earth-based magnetic alloys are formed with local random anisotropy, which 
is weak or strong depending on the type of rare earth used. A continuum model is used to 
study the correlations, susceptibility and magnetisation as functions of the anisotropy and 
magnetic field. 

1. Introduction 

Rare-earth-based alloys have been studied extensively over the last decade. In these 
alloys, random, uniaxial anisotropy plays an important role in modifying the magnetic 
properties, which are due to the other magnetic interactions present, mainly the average 
and the random exchange interactions. The Harris-Plischke-Zuckerman (HPZ) (Harris 
et a1 1973) model Hamiltonian 

' I  I I 

is commonly used to describe these systems. Here, J ,  is the exchange coupling between 
the ith and jth spins, which has an average value J o  and random fluctuations AJ, til is a 
unit vector in the direction of the random local anisotropy axis and H is an external 
magnetic field. 

Sellmyer and Nafis (1985) suggested a schematic phase diagram, which seems to 
emerge from the experimental data. 

There is ample evidence (e.g. Cornelison and Sellmyer 1984, Sellmyer and O'Shea 
1984) that for strong anisotropy the system is in a speromagnetic (SM) phase, where the 
spins are frozen in the directions of the local random anisotropy. For weak anisotropy, 
on the other hand, the system tends to order, ferromagnetically or antiferromagnetically, 
according to the type of exchange present. However, the anisotropy upsets this order to 
form a so-called correlated speromagnet (CSM) or correlated spin glass (csG) (O'Shea et 
a1 1983, Dieny and Barbara 1985). 

From the experimental results that have been reported on weak-anisotropy alloys, 
mainly those with Gd, La or Eu, the following conclusions may be drawn: (i) The AC 
susceptibility shows a fairly sharp rise at T, to the limiting demagnetisation value l/Nd, 
where Nd is the demagnetisation factor of the sample. (ii) Magnetisation measurements 
as afunction of external field below T, show the magnetisation to becompletely reversible 
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and the initial slope d M / d H  to be proportional to (.T/D)4 and much larger than the 
demagnetisation value. For larger fields M(H) fits rather well the expression 

M = Mo(1 - AH-‘/’) + XHFH 

with MO, A and xHF (high-field susceptibility) as fitting parameters (Sellmyer and Nafis 
1985). 

Alloys with large D/Jo ratio, such as is the case for alloys with the rare earths Nd, 
Tb, Dy or Er  (Cornelison and Sellmyer 1984), have a spin-glass-like behaviour, namely, 
the AC susceptibility is spiked at some temperature Ti, where a transition to a frozen 
magnetisation state occurs. (Whether this is a true phase transition or not is still an open 
question, both theoretically and experimentally, similar to the situation in an exchange 
disordered spin glass.) The magnetisation M(H) has a slow curved rise as His  increased. 

The correlation function between spins can be inferred from neutron scattering. A 
squared Lorentzian seems to fit the data for the Fourier transform of the correlation 
function (Yoshizawa et al1982, Aeppli eta1 1984). This also received some support from 
theory (Feigelman and Tsodyks 1986, Chudnovsky 1987). Alben et a1 (1978) and later 
Chudnovsky and Serota (1983) and Chudnovsky et a1 (1986) used a continuum version 
of the Hamiltonian (l), writing 

X = d 3~ { + a [ v M ( ~ ) ] ’  - P [ M ( x )  * li(x)] - M ( x )  * H}. (2) i 
Here a and /3 are related to the exchange and anisotropy parameters J and D of (l), by 

J a 2  N 
M i  V 

a Y = - - z -  

and 

D n  p = - -  
M i  v 

(3) 

(4) 

where MO is the saturation magnetisation, z is the number of nearest neighbours to which 
each spin is coupled, N is the number of spins included in the sum (l), a is the magnetic 
lattice spacing and Vis the volume of integration of (2). 

We assume that only the direction of M ( x )  varies in space, while its magnitude is 
constant and equals the saturation value. Denoting the polar angles of M ( x )  and h(x) by 
O(x) and OA(x) and assuming that M ( x )  follows A ( x ) ,  in the azimuthal direction, X 
becomes 

afie=--- d 3 x  h{a2(V@)2 - hA cos’[@(x) - OA(x)] - h cos O(x)} a2  

where 

Pa2 D 
a Jz 

h - -= -  
A -  

and 
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measure the strength of the anisotropy and of the external field relative to the exchange 
field, flex. This Hamiltonian will be our starting point in the following sections. 

2. The basic equation 

The properties of a magnetic system that depends on random variables, such as the local 
anisotropy directions, must be determined statistically. For this purpose let us define 
the partition function Z by the functional integral 

Z = %@( .) exp( -X[@]/T). I 
Defining the equilibrium angles @ ( x )  by 

S X / S @ ( X )  = 0 (9) 
leads to the equation 

a2V2@(X)  = h A  SlIl{2[@(X) - @A(x)]}  -t h Sin @(X) (10) 

z = Zexp(-Xe,[@]/T) (11) 

which the equilibrium angles must satisfy. Hence the partition function is 

where 

and Xeq is the Hamiltonian ( 5 ) ,  where the angles @(x) assume their equilibrium values 
of equation (10). In equation ( 1 2 ) ,  6 are the fluctuations around the equilibrium and 
X e , [ 6 ]  is given by 

(UM’ 
a’ X,[6]  = [ i & a 2 ( V 6 ) *  -t { h ~  COS[2(@(X) - @A(X)) ]  -k Ah COS @(X)}@(X)] (13) 

where again @(x)  satisfies equation (10) .  

average (sin O A ( x ) )  = 0 and a Gaussian distribution, which leads to 

(sin @A(x)  sin @ A b ) )  = (COS @ A ( x )  COS @ A b ) )  

The random local anisotropy direction, O A ( x > ,  is assumed to be characterised by an 

= &exp{ - ( [ @ A  ( x )  - @ A  ( y )  1’ ) /2} .  (14)  

It will be shown later that it is consistent to assume that the random directions are 
correlated over a given correlation length RA,  such that 

& ( [ @ A ( x )  - @ A ( Y ) ] ’ )  = Ix - Y l l R A  (15) 
and the average ( ) is over the distribution of the random anisotropy directions. 

As a result of the randomness in the anisotropy, the local magnetisation direction 
@(x) will also be random. The statistical properties of @(x) are, in principle, determined 
by equation (10). This direct route, e.g. by a derivation of a Fokker-Planck equation 
for the distribution function W { @ ( x ) } ,  is beyond the scope of this paper and will be 
discussed elsewhere. Here we shall adopt an approximate, but simple, approach to 
define average quantities, such as correlation function or magnetisation. Different 
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approximations are, however, appropriate for weak or strong anisotropies or for strong 
magnetic field. We shall therefore discuss each of these cases separately in the following 
sections. 

3. Weak anisotropy 

We use the smallness of the source term in equation (lo), since both the anisotropy and 
the external magnetic field are assumed to be small, to write the formal solution of 
equation (10) as 

I *  

O(x) = f U J d 3x’  G(x, x’)[hA sin{2[O(x’) - OA(x)]} + h sin O(x)] (16) 

where G(x, y) is the Green function 
G(X,Y) = -(1/44/ix - Y I .  

3.1. Correlation function 

Let us now express [O(x) - O(y)]’ using equation (16) and then take the average of this 
expression. In taking the average of a functional of 0 and of OA we shall use the weak- 
anisotropy approximation, which in this context means that 

where ( means averaging over the random anisotropy directions and ( ) M  means 
averaging over the random direction of the magnetisation. In performing the first 
average the angles 0 are considered non-random variables. 

We assume that O(x) is also a Gaussian random variable and that, similar to OA(x), 
it has a correlation length RM, which obeys 

and using equations (16) and (18) for the average ([O(x) - O(y)]’), we find a self- 
consistent expression for RM. 

In the weak-anisotropy limit RM 9 RA,  which is the justification for the procedure 
suggested by equation (18). This procedure, unlike the one used by Chudnovsky et ul 
(1986), leads to a self-consistent dependence of RM/RA on the magnetic field, namely 

where 

(F{o, @ A ) )  = ((F{o, @ A } ) A ) M  (18) 

(sin O(x) sin O(y)) = iexp{-+([O(x) - O(y)I2)} =iexp(-Ix - y l / R M )  (19)  

RA/RM Y M  = h[h i (1  f y M ) - 3  + h 2 y G 3 ]  (20) 

h A  = $(RA/u)’hA (21)  
h = (R,/u)’h. (22) 

In the above, the following approximation was used 

L / d 3 g ( i 5 + a l  4n -g)e-E/R =2/AIR3. (23) 

In the zero-field limit 

For h # 0 but h << i h i  

and for h P Ah: 

YM(0) = i h i ( 1  + Y M ) - 3  i h i ( 1  - $ h i  + , I .). (24) 

Y M ( h )  Y M ( O ) ( l  + 8 h 2 / h i )  (25)  

YM(h) (h/V2)’/’ $. i h i .  (26)  
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3.2. Susceptibility 

The average magnetisation in the direction of the external field can be written as 

V 

and the susceptibility is given by 

We use O(x) from equation (16) and the averaging procedure as in (18) and find 

Using equations (25) and (26) we find 

x = xO(l - Bh2) 

where 

and 

B = 32/h:. 

With 

as given by equations (6) and (21), the initial susceptibility can be seen to be proportional 
to (J/D)4, as previously found by Aharony and Pytte (1980,1983) and by Chudnovsky 
and Serota (1983) and Chudnovsky et a1 (1986), and is hence very large for weak 
anisotropy. This means that the magnetisation tends to saturate for extremely small 
fields h,  of the order of (h ; /8) ,  so that, for weak anisotropy, even weak external fields 
should be considered strong. 

Barbara and Dieny (1985) analysed xo, the initial slope of the magnetisation, in 
samples of Dy,Gdl-,Ni for 1 S x S 0.25. In these samples D/J increases with x .  They 
foundXo (J/D)3,si0.2. Sellmyer and Nafis (1985) find that the magnetisation curve for 
Gd,2FeloGa18 has a very large initial slope-the magnetisation nearly saturates ( M /  
M O  - 0.9) for fields of -1 kOe and then complete saturation is not reached until 
H - 100 kOe. 

It is therefore necessary to check now the strong-field case. 

4. Strong field 

As seen in the previous section the magnetisation approaches saturation for fields in 
excess of ( h i / 8 ) ;  therefore afield of this magnitude nearly aligns the magnetic moments, 
i.e. the angles O(x) anywhere are small (compared with any other relevant angle such 
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as OA(x)). Notice that even though this field is strong, in the sense discussed above, it 
still can and in most cases probably will be small compared with the exchange field, i.e. 
h < l .  

Equation (10) is now approximated by dropping O(x) compared with OA(x) and by 
replacing sin O(x) by O(x) in the last term on the RHS of equation (10). The solution for 
O(x) is 

where the Green function Gh(x - y )  is given by 

where 

4.1. Correlation function 

Using the above solution for O(x) we can express the average ([O(x) - O(X)]~)  and see 
how this depends on Ix - y / .  Making use of the identity 

we find that for Ix - y (  smaller than either Rh or R A  

This means that the correlation function (sin O(x) sin O ( y ) )  is a Gaussian with a width 
RF,  where 

v(3 /2)h i1(1  + 3/8h'12) 

4d(3/2)hi 'h3f4( l  + 6h-'J2) 

for h lJ2 G 4 

for h lI2 % 4. 
(38) R F / R A  = { 

For Ix - y /  large compared with both Rk and RA we find 

In this case the correlation function (sin O(x) sin O(y) )  becomes a constant as / x  - y /  
increases. 
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4.2.  Susceptibility 

As seen before the susceptibility is given by 

x = 1 d3x(sin O(x) - ah 
Hex V 

which can be approximated, in the present strong-field case, by 
MO 1 a 

d3x(02(x)).  
Hex V a h  

For O(x) we use equation (33) and find 

Hence 
(02(x)) = 32hahah-’”/(4 + h1/2)3. 

The deviation M of the magnetisation from saturation can be calculated as follows: 
i 

M(h)  = Hex(%)? lo x(h)  d h  = x(h)  d h  - 1; x(h)  dh)  = M - S M  

whence 

For weak fields equation (45) is found to fit Sellmyer’s data (Sellmyer and Nafis 1985) 
for Gd72Fe,oGa,, rather well, as seen in figure 1. The parameters chosen to fit the data 
are M O  = 220 emu g-’, h a  = 0.4, a/RA = 0.25 and Hex = 8 kOe. For fields larger than 
20 kOe we were not able to fit the data with a single term as in equation (45). 

5. Strong anisotropy 

The case of strong anisotropy occurs when either D is large or the random anisotropy 
correlation length RA is long, since the relevant parameter ish, CC (RA/a)’D. In this case 
it is reasonable to assume that IO - @,I is small, such that 

The solution to equation (10) is 
sin{2[O(x) - @A(x)]}  = 2[O(x)  - @A(x)] .  (46) 

d 3 x t  GA(x - x t ) [ - 2 h , @ ~ ( x )  -t h Sin O(X)] (47) 

where 
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Figure 1. The relative deviation from saturation 
of the magnetisation for weak anisotropy. The full 
curve is the single-parameter curve of equation 
(45) chosen to fit the data (dots) of Sellmyer and 
Nafis (1985) for Gd,,Fe,,,Ga,,. 

Figure 2. The magnetisation curve for strong ani- 
sotropy fromequation (60). The three parameters 
were chosen to fit data by Cornelison and Sellmyer 
(1984) shown by the dots. 

To conform with the previous definition of the statistics of OA(x) and the anisotropy 
correlation length RA,  as in equation (15), we assume here that 

( O A ( X ) O A ( X ’ ) )  - (O~,(X))  = - - (x  - x’I/RA. (49) 

5.1. Correlation length 

The magnetic correlation length is found from equation (19), with 

(sin O(x)OA(x’)) = (O(x)OA(x’)) exp( - ( 0 2 ) / 2 )  = g(x - x f )  exp( - ( 0 2 ) / 2 )  (50) 

where 

/ z  - Z’I 
g(z) = -2h - d32’  Gh(z  - zf)((02,) - -) 

A a2 ‘I RA 
and 

Substituting this into equation (18) and using (17) we find for the ferromagnetic cor- 
relation length 

Quiteobviously,forh = 0, yM = 1,i.e. themagneticmomentsfollowthelocalanisotropy 
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direction perfectly. As the magnetic field is increased, it prevents the magnetic moments 
from following the anisotropy and hence RM decreases. 

5.2. Susceptibility 

The expression for the susceptibility, equation (40) ,  now becomes 

1 M  a 1  x = - - O ( 1  + ih  -) ah - a2 1 d 3 x  GA(x)(sin O(x) sin O(0)). (55)  2 Hex 

Expressing this in powers of q = h/hA we find 

where 

MO 
x o  =- 

4hAHex 
(57) 

A = %(a/RA)hi1/2 e(02)/2 (58)  

B = 2 ( a / R ~ ) h , ” ~ ( 1  + Qe-(’2)’2). (59) 

and 

This indicates that the magnetisation has an initial slope inversely proportional to hA, 
and hence small; it increases as a quadratic of the field and then levels off as the negative 
quadratic term in x becomes important. 

There are some experimental indications for such a behaviour in Er- and Tb-based 
rare-earth alloys by Cornelison and Sellmyer (1984). Their magnetisation data for 
(Ers,Ga20)soFe20 are compared to the magnetisation curve based on equation (56),  
namely 

M = M ,  + xoHA(q + &4q2 - ‘B  3 4 )  (60) 

and are shown in figure 2.  The parameters that fit the weak-field data, with a saturation 
magnetisation value M O  = 144 emu g-’, are M ,  = 6 emu g-l, x0 = 2.7 emu g-’ kOe-l, 
HA = 13.3 kOe, A = 35.16 and B = 53.34. 

6 .  Conclusions 

A continuum HPZ model of alloys with random anisotropy and with external magnetic 
field yields self-consistently a smooth transition from very weak to intermediate and 
strong fields with no indication of different phases, correlated speromagnet (CSM) and 
ferromagnet with wandering axis (FWA), as suggested by Chudnovsky eta1 (1986). Strong 
anisotropy has not been treated before, except in the infinite limit as was done by 
Feigelman and Tsodyks (1986). The magnetisation as a function of field shows an alloy 
that is harder to magnetise. The correlation length first increases and then decreases with 
magnetic field, as the magnetic field prevents the magnetisation from freely following the 
local anisotropy. 
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